Table	3.	Bond	angles	(A),	bond	angle	s and	torsion
a	ngle	es (°)	with the	eir e.s.	.d.'s fe	or B, C	$C_{14}H_{20}$	O_6

CI-C2	1.524 (4)	C6-05	1.347 (4)
CIC8	1.541 (4)	C6O6	1.201 (5)
CI-CI1	1.507 (4)	C7C8	1.546 (5)
C^{2}	1.514 (4)	C7-C17	1.532 (6)
C3-C4	1.553 (4)	C11-01	1.207 (3)
C3-03	1.440 (5)	CII_02	1.346 (3)
C4-C5	1.517 (4)	C12-02	1.442 (6)
	1.422 (5)	CI4-C15	1.494 (6)
C5-C8	1.552 (4)		1.531 (5)
C5_C6	1.452 (5)	C14-03	1.416 (3)
C5-05	1.409 (5)	C14-03	1.427 (4)
CoC7	1.490 (3)	04	1.427 (4)
C2-C1-C8	111.5 (2)	C8-C7-C17	120.6 (3)
C2-C1-C11	113.6 (2)	C1-C8-C5	110.8 (2)
C8-C1-C11	114.5 (2)	C1-C8-C7	118.7 (3)
C1-C2-C3	109.3 (2)	C5C8C7	101.9 (2)
C2-C3-C4	114.7 (2)	CI-CI1-O1	126-1 (3)
$C_{2}-C_{3}-O_{3}$	108.2 (2)	C1-C11-O2	110-6 (3)
C4C3O3	102.9 (2)	01-C11-O2	123.3 (3)
C3-C4-C5	115.5 (3)	C15-C14-C16	113.7 (3)
$C_{3}^{-}C_{4}^{-}O_{4}^{-}$	104.3 (2)	C15-C14-O3	109.0 (3)
C5-C4-04	108.9 (3)	C15-C14-O4	109.2 (3)
C4C5C8	118.5 (3)	C16-C14-O3	109.4 (3)
C4C5O5	104.5(2)	C16-C14-O4	111-1 (3)
C8-C5-05	106.5 (2)	03-C14-04	103.9 (3)
C7-C6-05	110.4 (3)	C11-O2-C12	116.2 (3)
C7-C606	128.9 (3)	C3-03-C14	108.6 (2)
05	120.6 (3)	C4-04-C14	105.9 (2)
C6-C7-C8	105.4 (3)	C5C6	111.7 (3)
C6-C7-C17	110.7 (3)		
C1-C2-C3-O3	74.9 (3)	C4-C5C8-C1	9.5 (4)
C1-C2-C3-C4	39.4 (3)	C4-C5C8C7	136-7 (3)
C1-C8-C5-O5	- 107.8 (3)	C5-C8-C1-C11	173-9 (3)
C1-C8-C7-C17	-23.5 (5)	C5C6C7	- 0.3 (4)
C1-C11-02-C1	173.8 (3)	C5-C8-C1-C2	43.2 (3)
C2-C3-C4-C5	11.5 (4)	C5C8C7C17	- 145-3 (3)
C3-03-C14-04	- 33.1 (3)	C7-C8-C1-C2	- 74.0 (3)
C3-03-C14-C15	- 149.4 (3)	C7-C8-C5-O5	19.4 (3)
C3-03-C14-C16	85·6 (3)	C8-C1-C11-O1	- 140-4 (3)
C3-C2-C1-C11	159.3 (3)	C8-C1-C11-O2	42.2 (3)
C3-C4-C5C8	- 37.6 (4)	C8-C5-O5C6	- 12.7 (3)
O3-C3-C4-O4	9.4 (3)	C8-C5-C4-O4	79.2 (3)
C4-04-C14-C15	155.3 (3)	C8-C7-C6O5	13.1 (4)
C4-04-C14-C16	- 78.4 (3)		

We thank 'Le Ministère de l'Education du Québec' for financial support and Professor A. L. Beauchamp for assistance in the collection of data and help in resolution of the structure.

Fig. 2. An ORTEP diagram of isomer B with the H atoms and the atomic numbering. Ellipsoids represent 30% probability.

References

- AHMED, F. R., HALL, S. R., PIPPY, M. E. & HUBER, C. P. (1973). NRC Crystallographic Programs for the IBM/360 System. Accession Nos. 133-137 in J. Appl. Cryst. 6, 309-346.
- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321-324.
- CURRAN, D. P. (1988). Synthesis, 5, 417-439; 6, 489-513.
- DOEDENS, R. J. & IBERS, J. A. (1967). Inorg. Chem. 6, 204-210.
- GIESE, B. (1986). Radicals in Organic Synthesis. Formation of Carbon-Carbon bonds. New York: Pergamon Press.
- HANESSIAN, S., BENNANI, Y. L. & DI FABIO, R. (1990). Acta Cryst. C46, 934–936.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.
- SURZUR, J.-M. & BERTRAND, M. P. (1988). Pure Appl. Chem. 60(11), 1659-1668.

Acta Cryst. (1990). C46, 939-941

Intramolecular Free-Radical Ring Closures. III. Structure of a Chiral δ -Lactone*

BY STEPHEN HANESSIAN,[†] YOUSSEF L. BENNANI AND ROMANO DI FABIO

Département de Chimie, Université de Montréal, CP 6210, Succ. A, Montréal, Québec, H3C 3V1, Canada

(Received 12 July 1989; accepted 17 October 1989)

Abstract. $C_{26}H_{34}O_5Si$, orthorhombic, $M_r = 454.64$, $P2_12_12_1$, a = 7.425 (3), b = 10.491 (4), c = 32.882 (12) Å, V = 2561.4 Å³, Z = 4, $D_x =$

0108-2701/90/050939-03\$03.00

1.179 Mg m⁻³, λ (Cu K α) = 1.54178 Å, μ = 1.05 mm⁻¹, F(000) = 976, T = 220 K, R = 0.052 for 2075 observed reflections. A triphenyltin hydridemediated intramolecular cyclization of a chloropropionate ester and an α , β -unsaturated ester gave a crystalline lactone. Although spectroscopic assignment based on ¹H NMR and nuclear Overhauser

© 1990 International Union of Crystallography

^{*} Methyl (3*S*,4*R*,6*S*)-6-(*tert*-butyldiphenylsilyloxymethyl)-3-methyl-2-oxo-3,4,5,6-tetrahydro-4-pyranacetate.

[†] Author to whom correspondence should be addressed.

т

(

O(1) O(2)

0(3)

O(4) O(5)

C(1)

C(33

C(34) C(35)

C(36)

enhancement studies indicated the proposed structure, X-ray analysis was used for confirmation. The six-membered lactone exists in a twist-boat conformation with the substituents at C3 and C6 being pseudoequatorial and the substituent at C4 pseudoaxial.

Experimental. The reaction shown below produced two major lactones A and B in 62.5% yield and in a 3.5:1 ratio, one of which (A) was crystalline and suitable for X-ray analysis.

A colorless crystal of A, $C_{26}H_{34}O_5Si$, with dimensions $0.13 \times 0.30 \times 0.34$ mm, was obtained from hexanes and mounted on an Enraf-Nonius CAD-4 diffractometer. Unit-cell dimensions from 25 well centered reflections in the range $20 < \theta < 25^{\circ}$. Graphite-monochromatized Cu K α radiation was used, $2\theta_{max} = 140.0^{\circ}$. The data were collected in the ω -scan mode, $\Delta \omega = (1.00 + 0.14 \tan \theta)^{\circ}$. The orientation was checked every 200 measurements. The intensities of six reflections (checked every hour) presented a maximum fluctuation of less than 3.8%. 2665 reflections were measured, 2084 of which had $I > 1.96\sigma(I)$. Data corrected for Lp and uncorrected for absorption.

The structure was solved using *MULTAN*80,* refined on $|F_o|$ by the full-matrix least-squares method. Refinement anisotropic for C, O, Si atoms; H-atom coordinates were fixed at idealized positions $(d_{C-H} = 1.08 \text{ Å})$ with $U_{iso} = 0.09$ and 0.16 Å^2 [H(6x) and H(9x)], $U_{iso} = 0.13 \text{ Å}^2$ [H(12x), H(13x) and H(14x)] and $U_{iso} = 0.07 \text{ Å}^2$ (others). Mirror enantiomer tested by separate least-squares refinements giving R = 0.054, S = 1.07.

Final R = 0.052, wR = 0.050 (unit weight, 9 reflections suffering extinction rejected), S = 1.03, (shift/ σ) mean 0.010, max. 0.05. Residual electron density fluctuation on final difference Fourier synthesis: 2 peaks of 0.19 e Å⁻³ at 0.97–1.24 Å from Si, background ± 0.17 e Å⁻³.

adle I	. rinai ai	omic	coora	inaies i	ina ineir	<i>e.s.a. s</i>
× 10⁴,	Si × 10 ⁵)	and	$U_{\rm eq}$	values	$(Å^2 \times 10)$	3) for
		C_{26}	H ₃₄ Ò	₅ Si		

$U_{\rm eq} = (1/3) \geq_i \geq_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$							
x	у	Z	U_{eq}				
10845 (18)	14163 (15)	63584 (4)	46				
1349 (4)	-1379 (3)	5532 (1)	48				
3087 (6)	- 1880 (4)	5016 (1)	72				
3890 (7)	-4071 (4)	6690 (1)	79				
6442 (6)	- 3042 (5)	6534 (1)	99				
683 (5)	- 109 (3)	6276 (1)	50				
2247 (8)	- 2249 (5)	5305 (1)	51				
2086 (7)	- 3601 (5)	5445 (1)	50				
2422 (6)	- 3653 (5)	5908 (1)	45				
1060 (8)	- 2793 (5)	6123 (1)	49				
109 (7)	- 1863 (5)	5836 (1)	45				
3266 (9)	-4504 (5)	5193 (2)	69				
4367 (7)	- 3259 (6)	6008 (2)	61				
4842 (8)	- 3521 (7)	6446 (2)	63				
7037 (10)	- 3229 (10)	6952 (2)	129				
-683 (6)	-712 (5)	6051 (1)	47				
3602 (7)	1475 (6)	6419 (2)	62				
4540 (8)	1135 (8)	6020 (2)	87				
4129 (10)	471 (7)	6749 (2)	93				
4268 (9)	2796 (7)	6562 (2)	97				
- 79 (7)	1872 (5)	6842 (1)	51				
- 1023 (8)	978 (6)	7064 (1)	58				
- 1897 (8)	1274 (7)	7428 (2)	70				
- 1859 (9)	2516 (8)	7568 (2)	80				
- 950 (9)	3428 (7)	7354 (2)	77				
- 58 (9)	3123 (6)	6997 (2)	70				
205 (7)	2380 (5)	5926 (2)	49				
587 (8)	2041 (5)	5524 (1)	60				
- 16 (9)	2738 (6)	5196 (2)	69				
- 1070 (8)	3813 (5)	5258 (2)	64				
- 1496 (8)	4150 (6)	5649 (2)	68				
- 890 (7)	3462 (5)	5979 (2)	59				

Table 2. Bond distances (Å), bond angles and torsion angles (°) with their e.s.d.'s for C₂₆H₃₄O₅Si

0(1) 0(1)	1 354 (0)	C(2) C(2)	
	1.534 (0)	(12)(13)	1.544 (6)
U(1) = U(3)	1.451 (6)	C(2) - C(6)	1.534 (8)
O(2) - C(1)	1.201 (6)	C(3)C(4)	1.529 (7)
O(3)—C(8)	1·215 (7)	C(3)—C(7)	1.538 (7)
O(4)—C(8)	1.322 (7)	C(4)—C(5)	1.530 (7)
O(4)C(9)	1.457 (8)	C(5)—C(10)	1.518 (7)
O(5)-C(10)	1·406 (6)	C(7)—C(8)	1.508 (8)
C(1)—C(2)	1· 496 (7)		
C(1)-O(1)-C(5)	117-2 (4)	C(4)-C(3)-C(7)	111-3 (4)
C(8)O(4)C(9)	115-3 (5)	C(3)-C(4)-C(5)	113.4 (4)
Si-O(5)-C(10)	130.8 (3)	O(1)-C(5)-C(4)	110.8 (4)
O(1) - C(1) - O(2)	118-3 (5)	O(1) - C(5) - C(10)	106·8 (4)
O(1) - C(1) - C(2)	115.5 (4)	C(4)-C(5)-C(10)	113.5 (4)
O(2) - C(1) - C(2)	126.2 (5)	C(3)-C(7)-C(8)	112.0 (4)
C(1) - C(2) - C(3)	108.9 (4)	O(3)-C(8)-O(4)	124.0 (6)
C(1) - C(2) - C(6)	112.0 (4)	O(3)-C(8)-C(7)	125.5 (6)
C(3)-C(2)-C(6)	114.8 (4)	O(4)-C(8)-C(7)	110.5 (5)
C(2)-C(3)-C(4)	109-2 (4)	O(5) - C(10) - C(5)	109.9 (4)
C(2)-C(3)-C(7)	110.7 (4)		
O(1)-C(1)-C(2)-C(3) - 47-3 (6)	C(6)-C(2)-C(1)-O(1	-175.2(4)
C(1)-C(2)-C(3)-C	4) 58-2 (5)	Cin-Ci2)-Ci3)-Ci4	-175.4(4)
C(2)-C(3)-C(4)-C(-15.5(5)	C(6)-C(2)-C(3)-C(7	61.7 (6)
C(3)-C(4)-C(5)-O(-38.4(5)	C(7) - C(3) - C(2) - C(1)	-64.7(5)
C(4)-C(5)-O(1)-C(1) 54.8 (5)	C(7)-C(3)-C(4)-C(5	107-0 (5)
$C(5) \rightarrow O(1) \rightarrow C(1) \rightarrow C(2)$	-10.2 (6)	C(10) - C(5) - C(4) - C(4)	(4)
0(2)-C(1)-O(1)-C	5) 169-9 (4)	C(10)C(5)O(1)C(1) 178-9 (4)
0(2)	3) 132.6 (5)		1) $-67.5(4)$
O(2) - C(1) - C(2) - C(1)	6 4·6 (7)		4) 54-8 (5)
	-,		142.3 (3)

The scattering factors were taken from Cromer & Mann (1968) for Si, O and C, and from Stewart, Davidson & Simpson (1965) for H.

^{*} The programs used here are modified versions of: NRC-2, data reduction, NRC-10, bond distances and angles and NRC-22, mean planes (Ahmed, Hall, Pippy & Huber, 1973); MULTAN80, multisolution program (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1980); and ORTEP (Johnson, 1965).

Fig. 1. An ORTEP diagram of the title compound with the H atoms and the atomic numbering. Ellipsoids are represented at the 30% probability level.

Atomic parameters are given in Table 1, selected bond distances and angles in Table 2.* Fig. 1 shows a thermal-ellipsoid plot with the atom numbering. **Related literature.** The intramolecular cyclization of the chloropropionate ester shown above is a rare example of δ -lactone synthesis based on a radical process; see Surzur & Bertrand (1988), Curran (1988), Giese (1986) and Hanessian, Bennani & Di Fabio (1990).

We thank 'Le Ministère de l'Education du Québec' for financial support and Dr Michel Simard for assistance in collection of X-ray intensities and help in the elucidation of the structure.

References

- AHMED, F. R., HALL, S. R., PIPPY, M. E. & HUBER, C. P. (1973). NRC Crystallographic Programs for the IBM/360 System. Accession Nos. 133–137 in J. Appl. Cryst. 6, 309–346.
- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321-324.

CURRAN, D. P. (1988). Synthesis, 5, 417–439; 6, 489–513.

- GIESE, B. (1986). Radicals in Organic Synthesis. Formation of Carbon-Carbon Bonds. New York: Pergamon Press.
- HANESSIAN, S., BENNANI, Y. L. & DI FABIO, R. (1990). Acta Cryst. C46, 934–936, 947–939.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.
- SURZUR, J.-M. & BERTRAND, M. P. (1988). Pure Appl. Chem. 60, 1659–1668.

Acta Cryst. (1990). C46, 941-943

Structure of 6-Methylene-4-pregnene-3,20-dione

By Zdzisław Gałdecki

Technical University of Łódź, Institute of General Chemistry, ul. Żwirki 36, 90-924 Łódź, Poland

PAWEŁ GROCHULSKI AND ZDZISŁAW WAWRZAK

Technical Univsity of Łódź, Institute of Physics, ul. Wólczanska 219, 93-005, Poland

AND WILLIAM L. DUAX* AND PHYLLIS D. STRONG

Medical Foundation of Buffalo, Inc., 73 High St, Buffalo, NY 14203, USA

(Received 15 June 1989; accepted 5 December 1989)

Abstract. $C_{22}H_{30}O_2(1)$, $M_r = 326.47$, orthorhombic, $P2_12_12_1$, a = 9.662(3), b = 23.32(7), c = 8.167(2) Å, V = 1840.3(4) Å³, Z = 4, $D_x = 1.178$ g cm⁻³, $\lambda(Cu \ K\alpha) = 1.5418$ Å, $\mu = 5.34$ cm⁻¹, F(000) = 712,

0108-2701/90/050941-03\$03.00

T = 293 K, R = 0.035, wR = 0.044, S = 1.954 for 2147 unique observed reflections with $F_o > 2\sigma(F_o)$. Rings *B* and *C* have chair conformations, the *A* ring assumes an intermediate sofa-half-chair conformation, and the *D* ring is in the half-chair conformation. The progesterone side chain has the same con-

© 1990 International Union of Crystallography

^{*} Lists of structure factors, anisotropic thermal parameters, H-atom coordinates, distances and angles related to the *tert*butyldiphenylsilyl substituent, distances to the weighted leastsquares planes for the phenyl groups and a stereoview of the unit cell have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52340 (18 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

^{*} To whom correspondence should be addressed.